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The usual method of approximate calculation of electric fields [l] has 
already been widely applied to the solution of various steady problems, in 
Particular, to the problem of a plane magnetohydrodynamic channel, through 
which flows a medium possessing variable conductivity along the channel [2]. 
The variation of the electrical quantities with time have been studied by 
similar methods only In the case of periodic variation of the magnetic field 
[3] or for an arbitrary law of motion of the medium [4]. In connection with 
certain applications [5] there is Interest in the study of channels In which 
a nonconducting gas carries with It separate conducting clots. The solution 
is derived below for one of the simple problems concerning the distribution 
of electric field In the channel with allowance for the periodic variation 
of conductivity with respect to time and the longitudinal coordinate. 

1. We shall consider, on the basis of reasoning In [l], the motion of an 

isotropic conducting medium In a rectangular channel (Fig.1) placed In a 

magnetic field. We shall suppose that the 

00 velocity of the stream v = e,U is 
everywhere constant, the magnetic field 

B(s, z) = e,B, f erBr is independent of 

time, and that the conductivity of the 

medium is a periodic function of time t 

and of the coordinate r , represented 
in the form (1.1) 

Fig. 1 
0 = a& (z - ut) = a& (x + h - ut) 

If the magnetic Reynolds number R. 

is small, while the ratio of the transverse dimension of the channel to A 

is a quantity of smaller order than R;l, then the induced magnetic field 

and Its derivative with respect to time can be neglected in Ohm's law and 

Maxwell's equations. Then the electric field is quasi-steady and Its poten- 

tial Q will depend on the time as well as on a parameter. 
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For the potential cp and the current j , averaged with respect to E , 
assuming the walls of the channel to be nonconducting, we can write 

where B E B,y(x) is the distribution of the z-component of the magnetic 

field averaged with respect to I'. We shall assume moreover that Y(X), 

together with its derivatives up to the second order, tend to zero as (xl+m. 

The boundary conditions for cp have the form 

acp UB _-__=_- 
ay for y=&ti, r&J-o for 1x1-+= (l-3) C 

We introduce the auxiliary potential @ = cp + UBy / C, satisfying the 

inhomogeneous equation of type (1.2) and the homogeneous boundary conditions. 

Taking as the units of length, time, potential and current the quantities 

6, h / U, I/-B,,6 / c, o,,UB,, / c , respectively, we obtain Instead of (1.2) and 

(1.3) 
~+$$+F~=(~"+Ff')y, jX=--$g, j,=-$zz (1.4) 

a@ 0 ay= for y=fi, YpD-+o for /z~--fce (l-5) 

The solution 

By the usual 

@,r"$ 

The solution 

(q=$(E), F=$‘/$, g=x--Vt, V=h/6) 

of the problem will be sought in the form of the expansion 

CD = i a)k(5, t) sinzky, ak = 2% (k - ‘12) (1.6) 
k=l 

method from (1.4) we obtain 

F@)RI-- ak2& = ak(fn + Ff'), 6,k = 2 (-l)k+’ ak-’ 

ok-+ 0 for 12j-+oo (l-7) 

of the problem (1.7) can be expressed by means of tabulated 

functions only for isolated particular cases of the function e(c) , one of 

which will be considered below. 

2. Suppose that the conductivity of the medium is determined by Formula 

$ = cossg< and then V = TT/@ . Equation (1.7), taking the form 

@I;'- 2@k'p -BE - ak2@, =- ok(f" - a/‘/3 tm @,) (2.1) 

has the general solution when a,# !3 (2.2) 

Qk = - ii% [f” ( s cos PC - 2f’ (s) p sin BL] ) (5 = s - vt, ~~2 = aky3-2 - 1) 
L.lh.9 

It is easy to see that when f’ +O and the arbitrary choice of the con- 

stants c,, D,, a and b , the solution (2.2) does not satisfy the condition 

q-0 when 1x1 - m , since it has poles at the points x,= [/t+ n(a+1)/2s 

for all the values n = 0, f 1, f 2, f 3, . . . (with the exception, perhaps, 



of certain of these values). Accordingly, when fqkcongt there does not 

exist a solution of the problem f1.7), continuous and bounded for 

XE(- 00, oo), if JY5) * tan 85 * It is essential to assume that the 

solution will not exist also for a different choice of F(t), if F(c) has 

at the points 5, singularities of the type (E - EJ-l-a, a > 0. 

0x1 the other hand, we can attempt to construct a bounded but discontinuous 

solution of the problem (1.7), considering separately each interval [r,,,xB.3 

and choosing therein different values of the constants C,, D, from the con- 

dition of boundedness of the solution at the ends of the interval. 

Suppose that X E (Xn-l, Xnl. Let us set a = Xn,b = Xn-l in (2.2) and 

introduce the notation 

Gnk (2, t) = i a, (S, t) e-‘kerds, ff,k (II;, t) = 523, (.$, t) eYkerds (2.3) 
% 5-l 

The functions O,, , X,, are defined and continuous in the interval CX,,X~]. 

Setting (2.2) in the form 

let us require that the numerator vanishes when x = JC,_% and x 

is not difficult to see that for this it is necessary to take 

Cnii = - (2~iithny&~ [Gnk (x,+~) e-‘kz + If,& (.I&) emzrkznl 

Dnk = (2hhrc~k)-1 [Gnr (.x~_~) ezukxn + Hnk (Xn) e-"k"j 

NOW @k (X+1), @k (X,‘) a re bounded, since both the numerator 

denominator of (2.4) have first order zeros at these Points. In 

this, the limiting values of @k (Xn - 0) and @k (2, $- 0) may 

- xn IV 

(2.5) 
and the 

addition to 

not coincide 

if we do not impose special limitations on the field distribution j(s) . 

We shall show that the solution (2.4), (2.5), which is discontinuous in 

the general case, satisfies the conditions when 1x1 -. * , which for a fixed 

value of time t can be written in the form 

lim a;)k(XEIXn_lrXn]) =o 
I*l+m 

(2.6) 

In fact, from Formula (2.3) there follow the inequalities 

(2.7) 

Hence, taking into consideration (2.5), we find that when X & [X,+.,, X,,] 

and n - a , the function jCnh. - G,,ti(X) tends to zero more quickly than 

e-.'~""' ,. whilst j DA -t- 11,~ (x)1 is bounded or tends to infinity not more 

quickly than e-'"":'. This deduction is based on the assumption concerning 

the decrease of HI,* as 8 - = , which was stipulated in Section 1. 

Referring now to (2.4), we see that both terms of the numerator tend to zero 

like M,+2sM,as R-W. Therefore %9- 0 also as n -5, if X e(Xn-1, XTI). 



The decrease in R at the ends of the segments when n - m is easy toprove, 

if we calculate first of all @*(fx,-1: 0), applying l'%pital's rule and the 

relations (2.3),(2.5) 

lim Ok = (--l)~y, { [D,k + H,k (z,,)] emy@‘~ - CnkeY@En) 
x*~n-o 

(E, = 2, - w (2.8) 

lim 
P+xn+ 0 

@)tr = (-1)” rk (&+1, #ykBz, - [c,,, k - Gnk (%a)] eykSenj 

Similar considerations apply also when n - - m . Accordingly, Formulas 

(2.3),(2.5) define a bounded solution of the problem (X.7), which satisfies 

the conditions at infinity and is continuous in each interval (x,_~, x,). 

If we consider the behavior of ia, atafixed point x , then to the con- 
tinuous increase of time t there will correspond a decrease in the integer 
argument n (with the notation in the form (2.4)). The interval of time, 
in the course of which the point x belongs to the segment [x,_~, x,], is 
determined by the inequalities 

1 
- x- v r $(Zs+ +t <f [Z-G (Zs- 111 

and for these values of t the function @* is given by Formula (2.4) with 
?2.=s. For the succeeding segment [x,_~, x._,? 

1 
Y"--2p [ 

R(2s- I)]< t d + [Z-G (2s-- 3)] 

and in (2.4) one must now set n = s - 1 , and so on. If x and t are 
given, then from these inequalities we determine the number of the segment 
to which the point x belongs at the instant t . With the elapse of time 
T -T&V - 1 the position of the point CC in relation to the ends of th? 
segment 2s repeated and, as the calculations show, 

@k(*, t, iwe= @, b, t + ‘) h,=L?-l 
Hence it follows that the solution constructed for 9 and, evidently, 

for @ and cut is periodic with respect to time. 

At the points x = x,, the functions C$ undergo discontinuities, wherein 

the magnitude of the jump is determined according to (2.5) and (2.8) by For- 

mula 
{@,),=a?,, = @k(&,+O)---k&,---0)= 

2yr (---lpB s [szk(2n-t)+~k(~~+f)Isiabrk(~Z--)dZ G-9) 

0 

The continuity in the potential (o and the component of the electric field 

B,= -W%! , tangent to the moving line x = x,, are, respectively, expressed 

(in dimensionless quantities) by Formulas (2.10) 

(Cp) = - y (f) + i (@&)sin=k?.!, (&) = {f) - i (@k) akcosakg 

k=l k=l 

The discontinuity in the magnetic field {fl in reality does not make a 

contribution to (ml and (Ey) : if we isolate from (91 the part connected 

with the discontinuity (J'), then after some calculation Formulas (2.10) take 

the form 



Electric field In 

k=l k=l 

Here f%]* denotes the result of substituting in (2.10) only the continu- 

ous part (") of f(x). Consequently, (m] and {E,] vanish together with ($.]% 

A sufficient condition for this is, for example, that the func.tion 1(x,+ r) 

be continuous and an even function of r when 7 E [- 3t /p, zz / PI, since. 

then n,.(x,+ T) In this interval is an odd function of 7 . 

Erect calculation shows moreover that 

(2.12) 

i.e. &p/ax is continuous at the points x I x,. It turns out also that all 

the successive derivatives with respect to x are finite.. 

Accordingly, the constructed solution is similar to the potential of a 

double layer on the lines x I x,: the normal derivative on them Is finite 

and continuous, whilst the potential itself and the tangential derivative 

have dlscontinuities. 

3. The appearance of a discontinuity of the tangential component of the 
electric field may at first sight appear paradoxical and contradictory to 
the usual ass~tio~s of electrodynamics concerning the continuity of E, at 
the interfaces between media (**). 

In actual fact, this effect is connected with the assumption concerning 
the existence of Infinitely thin layers with nonzero electrical resistence. 
It is therefore appropriate to consider a simple model permitting study of 
the discontinpitles in ET as the result of a certain limiting transition. 

Suppose, for example, that the conductivity 
of the fluid In the channel is equal to u1 when 

k!? LX%3 (& w2;en Tkh CrL;i;~~t%abl . 
assumptions stipulated In Se&Ion 1, the cor- 

fY responding problem for finding the potential 
has In dimensionless variables the form [2] 

L_ 
(cp> =o, (9 2) = 0 ior x= fh (34 

Fig. 2 

VP-+0 
9 

for IzI+c=J, -=-f(z) 
?! 

for y=fi 

The solution of this problem is given by the series 
co 

‘P = - yf (4 + kzl yk (4 sin UkY 

“1 If the function J(x) is representEd in the form 

f (3~) = f0 (2) + Zaiq (z - b$, ai = const, bj = const 

where is the Heaviside unit function, fO(x) is a continuous function, 
then Y:(x) is called the continuous part of I(x) . 
**) Other problems can also be cited where this condition is not fulfilled. 
For example, in a study of the electric field in a channel with dielectric 
partitions [61 a discontinuity of B, was found along the partitions. 
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Y, = ! Y,, = Cskeak” + Dake-akx + L, (x, 0) for x E f- k, k) 

ysk= =,ke -akx + L&, c0) for z E (h, W) 

% 
x 

L, (x, a) = ~ 
2% 

e-akSy @) & _ e-ak” 5 e-aks j" (s) ds] 
a 

The constants CSz, D,, are determined by extreme1 
only one of which will be reproduced here, (e = uQ,/al 

cumbersome formulas, 

c rk - Dzk = f2ak lpirrhClkk + 8=btkk)-1] x 

x(~,[&.(k,w)--LI,f-kh, -~)-Lk(k,O)i-LI,(-kh,O)I+ (3.2) 

i- f& - 1) if’@) -t f’f- @I + A,‘@, =) + -&‘(- k, - m) - E ILk'(k, 0) + El; f- k, o)]) 

enabling us to find the quatities (*) 

V,= Yk (k)- ‘I’, (-k) = 2&ukk (C,;, - &k) + L, (k, 0) - L, (-- k, 0) 

ayk 

-I 3X 
= uk lc,, - L)2k) (3.4 

X==il 

We shall assume that E< 1 and h< 1 then 

uka~k 
0 

v, ‘=:---..---- 

a,k + 8 (5 e-akSf (s) ds + ‘i eaksf (s) ds) + 0 (ha), 2 j 
X=0 

m ‘+ (3.4) 

m -4X 
I 

The ratio h/c = R characterizes the electrical resistance of the layer 
f-h, h) If as h 4 0, E - 0 the resistance A increases without limit 
or tends to a nonzero limit, the; tim k'* is finite and nonzero (vanishing 
is possible, given a special choice of J’(8)), whilst (~~k/~z),o~)~~n th:;, 
however, R - 0 , then V,- 0 , and the behavior of (Bykiax),=s 
be different. We note also that when I) - const 3r 0 the current j, at the 
section x - 0 also tends to a constant value, which decreases to zero with 
increase of the limiting value of A . 

Accordingly, to the discontinuity Ye at a certain line (i.e. the discon- 
tinuity of the potential cp ) there corresponds an infinite growth of the 
normal derivative &&3x at the internal points of the narrow layer with 
small conductivity, contracting to a line of discontinuity. 

The condition of continuity of B, in the general theory follows from 
the assumption of boundedness of 3,. From the foregoing e%.ample it follows 
that this asswnption may not be fulfilled, and then there will exist a dis- 
continuity in ET . The infinite growth of En may moreover, as for example 
in Section 2, not appear clearly In the problem, since the solution for the 
infinitely thin layer with small conductivity is not considered. 

Formula (3.3), when E I 0 , takes the form 
h 

v, = - %i~k [S eak(h-s)f (s) & + -s’ eaklhts)f (s) ds] 

co ---a, 
Suppose that the distribution of magnetic field when x > h and x c-h 

is determined only by the distance from the points f h , respectively, i.e. 

for x>k 

for zf -h 

and the remainder of Section 3 it will be assumed that the func- 
Is continuous everywhere on the axis. 
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TLen from (3.5) we obtain Expression 
0 

v, = w i+p* 

[s 

c~-=~~q~ (s) ds+ j eakSqg (s) ds] (3.6) 

which is independent of h anTcoincides withyhe principal part of (3.4) 
when E< h. This formula expresses the fact, natural from the physical point 
of view, of the existence of a difference of potential between the points of 
two arbitrary isolated noninteracting regions, 
is determined by its rlownm magnetic field. 

in each of which the potential 

The solution constructed in Section 2 can be considered in the neighbor- 
hood of the points x = zn as the result of the limiting transition of the 
type R-m . In fact, the dimensionless resistance of the layer 
&+h) 

(x. - h.9 

"n+h 

R= $-‘dx 
s 

xn-h 

for finite h and $ = coe?g{ Is lnfl- 
nitely great because of the divergence 
of the Integral. 

From this it is to be concluded that 
the solution-of Section 2 corresponds 
approximately to the distribution of con- 
ductivity 

1 

CosapE for 

II,= 

x E [xn -t_ h, x,+l- h] 

E for x E [x, - h, x,, -I- II] 

and gives values of the potential in the 
regions [z, -!- h, rntl- /L]. 

4. We consider In conclusion an 

example making use of the Formulas of 

Section 2. We shall assume that the 

magnetic field is given in the form of 

a step-function (4.1) 

Fig. 3 
0 

Suppose that as time t varies In the limits from -a to + Jo , the 
point of discontinuity of the field x = 0 belongs to the segment Ix__,, z,,]. 

The location of the ends of the segment Is moreover determined by Equations 

x-1 =vt-$, "‘0 = V-t _1- $ 

Calculation by the formulas of Section 2 leads to the followlli< expression 

for @, when ItI < I? : 
i" for % > 20 and JJ < X-I 

al,; = 
K-17, COS Sltcosh~k (fit + 

i 

i/2x)-t-sin ntmqk (nt j l/2x)] for x_, < x < 0 

k’+[r, cos TCt wrh’r,; (XL- l/23) -i- sin Z1 rinb’fk (zt - l/g)] for 0 < x < z,, 

A-’ = r 
k 

rtin;rkCos,3i iinlly~ (zt f $. - p.1.) (4.2) 

The true potential m Is Identically equal to zero when x c--n/S and 

Y when x > n/s for all Instants of time. 
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The meaning of this result is clear: for all values of t when xc-n/C 

there Is no magnetohydrodynamic Interaction, whilst when _X > r/g there is 

no current, only a charge distribution. Currents can exist only inside that 

unique segment to which at a given instant belongs the point 3~ = 0, where 

the field is included. The flow pattern of the currents does not differ 

qualitatively from the case of constant conductivity, i.e. the currents when 

x z 0 are directed on average against the electric field, and when x < 0 

with the field, forming a closed loop. 

In Fig.sc, the region In which cp varies periodically with respect to t 
for each x Is depicted in the xt plane (a series of parallelograms). The 

corresponding curves are schematically shown in Fig.3b. 

We note that cp varies continuously in the transition through the verti- 

cal sides of the parallelograms and vanishes at these points, whilst at the 

Inclined sides ip undergoes discontlnulties. 

We shall now calculate the Joule dissipation in such a flow. 

It is evident that from the usual formula 
03 1 

iPB&PU, 
Q= ca ss 5 dxdy 

--cc -1 

and so when $ = const it follows that 

U~B,%%, 
Q= cz i( iuf dx dy 

- -1 

Taking account.of (1.4),(1.6),(4.1) and (4.2), we can moreover write 

Q: 2Uzf;‘bo ; (-l)k+l 7 q~ (E) cDr (x, t) dz 
k=I 0 

Hence, substituting Expression (4.2) for Qkr, we obtain 

(4.3) 

P-4) 

(4.5) 

fj’k (t) = (T/i2 - 1) (COS 2Jb! cosh2r@t + coshfirk) + 

+ (Tk2 + 1) (c.05 2fitco,hil~,< + cosh@&) + 2yh. sin 2nt sinh 2y,,nt 

If We now Pass to the dimensional time nBt/811 and subsequently let 

g-0, then in the limit we obtain the well known result for flow with con- 

stant conductivity [21 

QZ (4.6) 

This limiting transition Is valid only for It.1 < 3 , since Pk(f 3) - 0. 

Averaging over one period, the amount of dissipation is 
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Because of the presence of zones with small conductivity, when s - 0 

the dissipation tends to a quantity equal to one half of (4.6). 

In the other limiting case, for very large values of $ , the following 

asymptotic formula holds: M 

The decrease of Q* with increasing s has an ohvious physical meaning, 

since then the region In which the currents flow Is contracted proportionally 

to l/s and the strength of the currents remains bounded. 

We note that the value of the conductivity averaged over the whole channel 

o.- &x, for all 6 # 0 and for all instants of time. The value of the dls- 

sipation Q1 in the channel, calculated according to theory with constant 

conductivity, Is therefore determined by Formula (4.6), where a0 must be 

replaced by u. . It Is easy to see that In the general case Q%(u.) #p(g), 

moreover the difference between these quantities becomes particularly slgni- 

flcant if p > 1, when, according to (4.8), the quantity Q*(e) Is very small. 

The results obtained in Section 2.4 can be generalized to the case of the 

more complex law of variation of conductivity 

Q = G-J/( co.52 pa (J: - ut) for r-uUtE[E;k_,, &I (k=O, fl, *a, -. .) 

where Uek, Ek and pk > 0 are arbitrary numbers. If in the Intervals 

IEk-1, Ekl the quantity CCS P& does not vanish, then construction of a 

continuous solution is possible. 

BIBLICGHAPHV 

1. Vatazhin, A.B. and Regirer, S.A., Prlblizhennyi raschet raspredelenlia 
toka prl techenil provodiashchel zhidkosti po kanalu v magnltnom pole 
(Approximate calculation of the current distribution when a conducting 
f;l.cl flows along a channel within a magnetic field). PMpl ~01.26,~3, 

. 
2. Vatazhin, A.B., Nelotorye dvumernye zadachl o raspredelenll toka v elek- 

troprovodnoi srede, dvlzhushchelsla po kanalu v magnltnom pole (Cer- 
tain two-dimensional Droblems concerninn the current distribution in 
an electrically conducting medium moving along a channel in a magnetic 
field). PMTF, N9 2, 1963. 

3. Korsunskil, L.M., Elektromagnltnye 
Magnetic Hydrometric Instruments 
prlb., 1964. 

7 
idrometricheskie prlbory (Electro- 
. Izd.Gos.Kom.standartov, mer I lzmer. 

4. Iakubenko, A.E., II Vses. s"ezd yo mekhanike. Annotatsil dokl. (All-Union 
Congress on Mechanics. Annotated proceedings). Izd."Nauka", lg64,p.239. 

5. Fraidenralch, N., McGrath, I.A., Medin, S.A and Thring, M.W., A theoreti- 
cal analysis of the thermodynamics of the striated ntagnetohydrodyna- 
mlc system. J.appl.Phys., ~01.15, B 1, p.13-27, 1964. 

6. Vatazhin, A.B. and Nemkova, N.G., Nekotorye dvumernye zadachl o raspre- 
delenll elektricheskogo toka v kanale magnltnogldrodinamlcheskogo 
generatora s neprovodiashchlml peregorodkami (Certain two-dimensional 
problems concerning the distribution of electric current In the chan- 
nel of a magnetohydrodynamic generator with nonconducting partitions). 
PMTF, N9 2, 1964. 

Translated by A.H.A. 


